
Kotlin Functional Programming

Download the full source codes from here
https://drive.google.com/file/d/1JyVLjUWXQbmXIkUifjKlfzh-iipPNhv4/view?
usp=sharing

Kotlin is not a pure functional language but do support Lambdas and High order
functions.

Lambdas - anonymous functions
Lambda expressions and anonymous functions are function literals. Function
literals are functions that are not declared but are passed immediately as
an expression

We created an anonymous function and save her in a val later we will send it to
another function. The function that receives it is will be called an High Order
function.

Our Lambdas can be shorter using Type inferred - Kotlin deduced it from the
function - but remember pשrameters types can never be inferred.

We can use Lambdas in High order functions - functions that receives other
functions as arguments
filter() - a pre-existing high order function that filtering a list using a given
predicate. A Predicate is a lambda function that take a collection element and
return a boolean value: true means that the given element matches the
predicate, false means the opposite

1.

2.

Because the function receives Lambdas we can discard the () also if
the lambda is the last parameter it can be written outside the
parentheses
Implicit it - if the Lambda has only one parameter it can be implicitly
called by it

According to Kotlin convention, if the last parameter of a function is a function,
then a lambda expression passed as the corresponding argument can be
placed outside the parentheses - Such syntax is also known as trailing
lambda.

When using default parameters, If the last argument after default parameters is
a lambda, you can pass it either as a named argument or outside the
parentheses. If the lambda is the only mandatory argument in that call, the
parentheses can be omitted entirely:

You can explicitly return a value from the lambda using the return syntax.
Otherwise, the value of the last expression is implicitly returned.

If the lambda parameter is unused, you can place an underscore instead of its
name:

Function pointer ::
If we want to pass non-anonymous function we can use the :: which is a
function pointer

The filter function will call the isEven function passing it each element on the
list and will filter by it’s result

map
Returns a list containing the results of applying the given transform function to
each element in the original array

In the last example we get a list of Boolean since it is the result of applying the
contains function.

flatMap
Returns a single list of all elements yielded from results of transform function
being invoked on each element of original array.

In other words both function applies a function to each of the elements but flat
map also “FLATTEN” it - To understand what flattening a stream consists in,
consider a structure like [[1,2,3],[4,5,6],[7,8,9]] which has "two levels".
Flattening this means transforming it in a "one level" structure :
[1,2,3,4,5,6,7,8,9]

1.

2.

Please note that in the above example the it refers to the list inside - the it the
inner object

More on collection sorting here (please read and note the sortBy function that
also receives a selector)
https://www.baeldung.com/kotlin/sort

Let’s use complex data like JSON objects.
Lets make a data structure of parents and their children and play a little

Drills
Using the data above Print one list that contain only the ages of 1 to 10

Solution:

Define a map which contain each parent and his children ages (not list
of maps, just one map) and put some faulty ages between the correct
ones (like -6 or 150). Then print out the average children’s age of each
parent (take only the valid ages to the already exist Kotlin average()

2.

3.

4.

5.

6.

function) - use map this time. Try to solve this in two ways, use both
lambdas and the :: (function pointer)

Solution:

Now print the average of all the children together

Solution:

Print the names of parents with faulty ages. Hint: search the Kotlin API
for function that applies boolean condition on a list

Solution:
any() - Returns true if at least one element matches the given predicate
(boolean values functions)

Print the number of faulty ages

Solution:

Print only the names of the parents who has no faulty data (use all())

Solution:

take(n) - takes only the first n elements
drop(n) - leaves the first n elements and leaves the rest
first(), last() - the first and last elements of the list

takeIf()
take the list if the the given predicate gives true
Take the list if it contains 4 if not we will get null

Note: takeIf() and takeUnless() is part of the Kotlin Standard library and will be
mentioned later on. It can be applied to any instance of any class.

zip() - create list of Pairs. each pair will consist of key from the first list and
value from the second. If one list in longer then the second it’s extra values will
be ignored

Drill
Use zip function to create a list of pairs that each pair’s key is the name and the
value is true or false whether the name contains the character ‘a’

For more reading on קצ and High Order functions:
https://kotlinlang.org/docs/lambdas.html#higher-order-functions

Lazy Sequence

This is about 1-2 seconds

This takes only 10 mili-seconds

Sequences are containers where the main difference between them and all the
other collections is that the actual computing is done only when needed - in
both examples we only needs the first 1000 not on all of the elements. In the
first example the computations were made on all the list, but in the second one
the computations were made on only the ones we needed - the first 1000
elements - this is the meaning of Lazy Sequences. And in general Lazy is a
wide concept in Kotlin meaning that it’s only done when needed.

Because of this Sequences can be infinite.

 If we don’t take the first 1000 the program will go to infinite loop - he tries to
turn infinite loop into list

Lazy Algorithm for finding prime numbers - Sieve of Eratosthenes
This algorithm is based on taking each number and removes all his
multiplications

Drill - Advance
Build an algorithm based on the sieve of Eratosthenes that print the first n
primes - use sequences

Solution:

●

●

●

●

●

●

●

●

●

●

Scope functions

The Kotlin standard library contains several functions whose sole purpose
is to execute a block of code within the context of an object. When you call
such a function on an object with a lambda expression provided, it forms a
temporary scope. In this scope, you can access the object without its name.
Such functions are called scope functions. There are five of them: let, run,
with, apply, and also.

Basically, these functions do the same: execute a block of code on an object.
What's different is how this object becomes available inside the block and what
is the result of the whole expression.
Here is a short guide for choosing scope functions depending on the intended
purpose:

Executing a lambda on non-null objects: let
Introducing an expression as a variable in local scope: let
Object configuration: apply
Object configuration and computing the result: run
Additional effects: also
Grouping function calls on an object: with

here are two main differences between each scope function:
The way to refer to the context object
The return value.

The scope functions differ by the result they return:
apply and also return the context object.
let, run, and with return the lambda result.

The return value of apply and also is the context object itself. Hence, they can
be included into call chains as side steps: you can continue chaining function
calls on the same object after them. They also can be used in return statements
of functions returning the context object.

let, run, and with return the lambda result. So, you can use them when

assigning the result to a variable, chaining operations on the result, and so on.

let()
define a scope a variable - it applies the the variable that we opened the scope
on, we can give it a name

We can use run() and instead of the lambda argument (it) we have the
lambda receiver (this):

On the other hand, if this is omitted, it can be hard to distinguish between the
receiver members and external objects or functions. So, having the context
object as a receiver (this) is recommended for lambdas that mainly operate
on the object members: call its functions or assign properties.

Drill
Create a list of names and print the size of only the names that are longer then
3 using let

If the code block contains a single function with it as an argument, you can use
the method reference (::) instead of the lambda:

We can use let for working with nulls - we enter the block only if it exists maybe
aging str is not null

run()
run is used to execute a block of code and return the result - if the run function
invoked on an object - not mandatory - unlike let - you can refer it by this (not
it like let), like let it returns the lambda result

Combine let and run :

also()
also is very similar to let but instead of the lambda result it return the object
itself (both have it)

The also expression returns the data class object whereas the let expression
returns nothing (Unit) as we didn’t specify anything explicitly.

apply
The context object is available as a receiver (this). The return value is the
object itself.
This is what differentiate it from also - Apply and also are almost the same
apply has this and also it

Use apply for code blocks that don't return a value and mainly operate on the
members of the receiver object. The common case for apply is the object
configuration. Such calls can be read as “ apply the following assignments to
the object.”

1.

2.

On the other hand, We should use also only when we don’t want to shadow this.

with()
“with this object, do the following.” - we have this

Because we have this it is very similar to apply but with 3 major difference:
Apply must work on an instance (the receiver) in with the instance is
supplied as a parameter
with returns the lambda’s result:

For more reading on scope functions:
https://kotlinlang.org/docs/scope-functions.html

Please Notre that all of the scoped functioned mentioned above are part of the
Kotlin’s standard functions
There you can also find a function we already discussed takeIf() &
takeUnless()

Lets look closely on takeIf:

●

●

●

From it, we notice that
It is called from the T object itself. i.e. T.takeIf.
The predicate function takes T object as parameter
It returns this or null pending on the predicate evaluation.

Thus it is very useful in null checks:

You can read more on takeIf() from where is example is taken from

use()
Executes the given block function on this resource and then closes it down
correctly whether an exception is thrown or not.
Must be used on objects that implements the java closable interface

No need to close the FileReader

Inline function
All of our scoped functions were inline
Meaning the compiler copies the function code to the place where the we
invoke it
When using lambda the compiler create an instance of the function each
time unless we declare the function be inline and then he just copies the
function code

If we add the keyword noinline before the lambda the compiler will alert us that
the inline keyword has no meaning cause it saves time when working with
functions

Operator Overloading in Kotlin

Use operator keyword before the fun

We already have by default the == and != when we override the Any’s equals()
method

We can overload the plus, minus, times, unsayMinus, unaryPlus, inc(++),
dec(—), and not

Kotlin has a special treatment of Java's Comparable.
Simply put, we can call the compareTo method in the Comparable interface by a
few Kotlin conventions. In fact, any comparisons made by “<“, “<=”, “>”, or “>=”
 would be translated to a compareTo function call.

In other words, If we want to overload the > , >= and < , <= we need to
implement the Comparable interface

